

Infrastructure for fabrication of optical fiber-grade non-oxide soft glasses and components

IDUB I.4.2 Proposal Ryszard Buczyński

Prof. dr hab. Ryszard Buczyński Head of Department of Photonics tel. +48 22 55 32 023 Ryszard.Buczynski@fuw.edu.pl Faculty of Physics University of Warsaw INICIATYWA DOSKONAŁOŚCI UCZELNIA BADAWCZA WYDZIAŁ FIZYKI INFRASTRUKTURA BADAWCZA IDUB

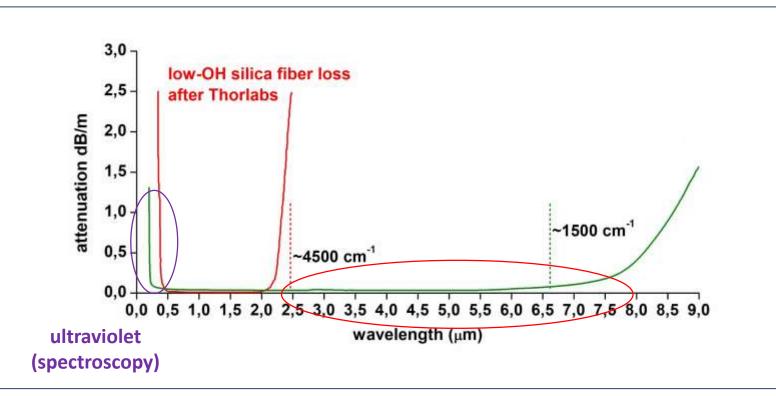
27.02.2023, godz. 9:00, aula 0.06

Proposal overview - motivation

Optical fibers:

- Telecommunications
- Lasers
- Sensing

The main material


- Fused silica

Pros:

- ✓ So far unrivalled transparency (near infrared and visible)
- ✓ Mature tech = low cost <u>of fiber</u>
- ✓ High durability

Cons:

- High cost of fiber-grade starting materials (only common fiber types are cheap)
- High processing temperatures
- Transparency <u>limited</u> to VIS and NIR no access to UV no access to mid-infrared

spectral fingerprint region – spectroscopy nondestructive imaging

CC BY-SA 3.0

environmental monitoring

Proposal overview - justification

what substantial added value for the UW this project will bring?

Implementation of project will bring non-oxide glass fabrication to Ochota Campus:

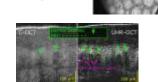
AND

Currently unavailable:

UV and Mid-infrared fibers & imaging bundles UV and Mid-infrared optical components

Optical fiber and imaging bundles adjustment free easy to handle selective sterile

Existing standard fiber technology:

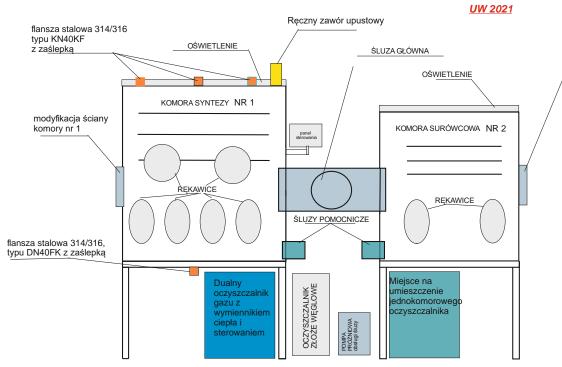


Impact on world science

Opening ultraviolet and mid-infrared light to optical fibers & components

Mid-infrared 'can see' through hard materials: ceramics and

Noninvasive, sterile biological sample imaging& fast diagnosing


Project content & current stage of realization

Purchase of Infrastructure: complete glass melting station for ultra-high purity fabrication of fiber-grade non-oxide glass

Implementation includes complete, new equipment required for immediate start of operation:

1) Dual chamber glove-box (1. raw materials storage and preparation; 2. glass melting and annealing)

- 2) Inert gas purifier to remove oxygen and moisture from glove box atmosphere.
- 3) Solvent absorber system to remove post reaction compounds.
- 4) Set of detectors moisture, oxygen for monitoring internal atmosphere parameters.

Project content & current stage of realization

Purchase of Infrastructure: complete glass melting station for ultra-high purity fabrication of fiber-grade fluoride glass Implementation includes complete, new equipment required for immediate start of operation:

- 1) Dual chamber glove-box (1. raw materials storage and preparation; 2. glass melting and annealing)
- 2) Inert gas purifier to remove oxygen and moisture

from glove box atmosphere.

3) Solvent absorber system to remove post reaction compounds.

4) Set of detectors – moisture, oxygen for monitoring internal atmosphere parameters.

Project content & current stage of realization

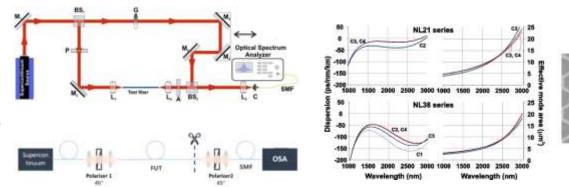

Ongoing processes:

Purchase of technical materials and assembly of processing chamber and temperature controllers – **completed**

Raw materials:

Purchase of raw materials for glass smelting - possible only after the chamber is operational due to storage requirements

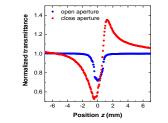
Currently no raw materials for glass development -Public order procedure – on going

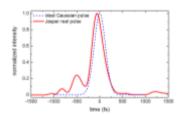


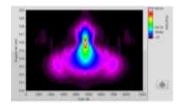
Project-relevant expertise in our group

Glass & fiber characterization and experimentation exprtise

Versatile characterization of **linear properties** Examples:


- Material dispersion (glass) and chromatic dispersion (fiber) - Michelson and Mach-Zehnder interferometers
- Birefringence
- Attenuation, bend loss, numerical aperture & mode field diameter & the like.




Characterization of nonlinear optical properties and ultrashort laser pulse propagation dynamics

- Z-scan
- Frequnecy-resolved optical gating (FROG) and
- cross-correlation frquency resolved optical gating (XFROG)

Conclusions

Declared equipment purchased, installed and comissioned

Lengthy tender procurement and administrative requirements bottleneck procurement of critical raw materials

We are open for campus collaboration - our expertise your applications

3-4 undergrads or graduate students taking advantage of the availability of the proposed technology in their dissertation or diploma workshops per annum (2 PhD students are working now @ 02/2023).

Preferred collaboration model – <u>joint</u> papers and externally funded grant proposals for Ochota Campus-driven interdisciplinary research

Contents lists available at ScienceDirec Bioelectrochemistry

journal homepage: www.elsevier.com/locate/bioelechem

Ultrathin glass fiber microprobe for electroporation of arbitrary selected cell groups

Julita Kulbacka^{a,a}, Rafał Kasztelanic^{b,c}, Małgorzata Kotulska^d, Dariusz Pysz^h, Grzegorz Stępniewski^{b,c}, Ryszard Stępień^b, Jolanta Saczko^a, Damijan Miklavčič^a, Ryszard Buczyński^{b,c},

⁴ Department of Mobicular and Gelular Biology, Biology Phormacy, Weschaw Modical Delevenity, Bierowska 2114, 53-556, Weinhow, Polond ¹⁰Department of Glass, Journal of Detroiol, Mobieluk Technology, Welczynka 137, 01-339, Warsan, Polond ¹⁰Carday of Physics, Weinner Horiersky, Paterian J. 20-499 Winnae Polond

Croanty of Physics, Internet University, Paterior 1, 42-455 Wardane Potenti "Department of Biomedical Engineering, Faculty of Paedecontrol Philhesis of Technology, Wrischne Esthemity of Science and Technology, Wylerney Wynkolskiege 27, 50-270 Wrischin, Politik

* University of Galdjane, Faculty of Electrical Engineering, Trzaika 25, 51-1900 Galdjana, Slovenia

	mature
1	COMMUNICATIONS
	Contraction of the second second second

ARTICLE

Mass//distorg/10.3038/s41467-022-29776-6 OPEN

Two octave supercontinuum generation in a non-silica graded-index multimode fiber

Zahra Eslami ()¹, Lauri Salmela ()¹, Adam Filipkowski²³, Dariusz Pysz², Mariusz Klimczak ()³, Ryszard Buczynski ()^{2,3}, John M. Dudley ()⁴ & Goëry Genty ()¹⁴

Research Article	Vol. 27, No. 7	/ 1 Apr 2019 OPTICS	EXPRESS 9502
Optics EXPRESS			1

Fabrication and characterization of large

 numerical aperture, high-resolution optical fiber bundles based on high-contrast pairs of
a soft glasses for fluorescence imaging

B. MOROVA,¹ N. BAVILI,¹ O. YAMAN,¹ B. YIGIT,² M. ZEYBEL,² M. AYDIN,³ B. DOGAN,⁴ R. KASZTELANIC,⁵ D. PYSZ,⁵ R. BUCZYNSKI,^{5,6,8} AND A. KIRAZ^{1,7,9}

Our track record in the last 5 years SPEAKS FOR US!

Number of peer-reviewed papers (IF journals <u>only</u> , no mdpi):	>100
Including: Number of papers in collaboration with leading foreign groups: &	50
Number of cross-disciplinary papers in collaboration with other groups (optofluidic, bioelectrochemistry, bioimaging):	15